
WHY AI-DRIVEN
DEVELOPMENT
MAKES AGILE SOFTWARE
DEVELOPMENT OBSOLETE

Dr. Brian Scott Glassman

A FUTURE VISION

This is a research product of https://Ainspire.ai © 2025

Introduction
AI-driven software development is eliminating the relevance of Agile entirely. For
twenty-five years, Agile has been the premier framework for managing software
development, but CTOs and VPs of Engineering now recognize that its core
principles, designed for human-paced development, are being broken by AI
models that generate hundreds of lines of code per minute. We are in a
transitional period, waiting for a new framework that addresses AI-driven realities.
What once made Agile revolutionaryspeed, collaboration, and iterative
feedbackhas become obsolete.

Our teams have extensive experience building and creating processes for AI-
driven software development tools, and together we have made the following
findings. This article explains why Agile's major principles are no longer valid and
how clinging to them now hampers progress. We review six key points: delivery
speed, daily collaboration, sustainable pace, simplicity, self-organized teams, and
customer needs over lines of code. Your team should understand why Agile is no
longer appropriate and begin organizing around a new paradigm that embraces
AI's capabilities rather than outdated human-centric processes.

1. Delivery Speed: When Agile's Core Strength Becomes Its Fatal Flaw
Agile emerged as a response to Waterfall's glacial pace, with its principle of
delivering working software in weeks rather than months. This was revolutionary in
2001. But AI has shattered these timelines completely. Development cycles that
once took months now compress to weeks, and weeks to days. AI coding models
generate hundreds of lines of functional code per minute, with teams of AI mesh
agents soon capable of updating entire codebases simultaneously. Entire projects
now complete before the next scheduled sprint review.

When your development process is built around two-week sprints, but AI delivers
a complete feature in two days, you're forcing artificial delays into your workflow.
The speed of software development is no longer the bottleneck yet Agile
processes continue to organize work as if it were. Future systems for organizing
work will be driven by AI themselves, not human Scrum Masters. The AI will
determine optimal task sequencing and delivery schedules based on actual
technical constraints rather than arbitrary meeting cadences.

2. Daily Collaboration: When Human Coordination Cannot Keep Pace
Agile mandated that business people and developers work together daily,
assuming human coordination was essential for success. But this was designed for
human-paced cycles where daily standups could keep everyone aligned. In AI-
driven development, the speed is too much for traditional collaboration rituals.
When AI mesh agents coordinate simultaneously across codebases, updating
multiple sections at once, code collisions become inevitable and happen far faster
than any daily standup could address. AI itself will have to facilitate collaboration
between developers, managing merge conflicts, coordinating parallel
workstreams, and resolving integration issues in real-time. We need AI systems
that mediate between developers, prevent collisions before they occur, and
orchestrate work at machine speed while humans provide strategic direction
rather than tactical coordination.

3. Sustainable Pace: When Human Endurance Is No Longer the Constraint
Traditional Agile emphasized sustainable pace to prevent developer burnout.
Teams were expected to move at a steady, manageable pace measured by story
points and burn down charts, treating software development like an assembly line
where human capacity determined output. But with AI, velocity becomes
completely uncoupled from human effort. A development team can now build
more software in two weeks with AI than the same team of humans could produce
in six months. The constraint is no longer pace or human stamina. Instead, limiting
factors shift to code quality, customer fit, application performance, AWS
operational costs, or AI inference bills. Story points and burn down charts become
irrelevant metrics when AI does the bulk of coding labor. The new challenge is
managing the constraints that emerge when coding speed is effectively infinite.

4. Simplicity and Self-Organized Teams: When Less Is No Longer More and Size No
Longer Matters
Agile championed simplicity, maximizing the amount of work not done, because
every extra line of code meant more time, risk, and human labor. Similarly, Agile
believed self-organized teams closest to the work would design better systems.
But AI obliterates both principles simultaneously. With AI writing code, the
marginal cost of generating extra modules or multiple user interfaces is minimal.
Teams can mock up several UI options and cross-compare them with AI-simulated
customer reviews, openly violating the simplicity principle but producing better
results.

The real cost is no longer tied to lines of code but to optimizing the codebase to
work effectively with AI and applying best practices to prevent catastrophic errors
like when an AI deletes key functions while working outside context window limits.
Meanwhile, team size is shrinking dramatically. A few experienced developers with
high-performance AI models can accomplish what once required entire
departments. Simplicity as a constraint and self-organized teams as a structure
both fade when AI changes the fundamental economics of code production.

5. Customer Needs Over Lines of Code: When Customers Become the Bottleneck
Agile prioritized satisfying customers through early and continuous delivery, but
assumed gathering customer feedback was faster than building software. AI has
inverted this relationship. Development now moves so fast that entire projects
complete before the next scheduled customer feedback session, making live
customer input the new bottleneck. AI-powered systems can simulate hundreds
of rich customer interactions from comprehensive personas, accelerating
feedback cycles and generating actionable insights instantly. More critically, AI
can collaborate with customers, product managers, and stakeholders to uncover
the true issues driving change requests, because customers often provide limited
or convoluted feedback requiring investigation to identify core intent. AI can
validate whether changes are necessary, brainstorm holistic solutions, and
calculate broader impact across the entire codebase. The fundamental shift: lines
of code are no longer expensive or time-consuming, but understanding genuine
customer needs remains difficult and slow. When coding capacity becomes
effectively infinite, the entire Agile framework collapses. What matters now is
using AI to deeply understand customer intent and deliver transformative value
rather than surface-level feature requests.

Conclusion
Agile served its purpose for a quarter century, but AI-driven software
development has fundamentally broken every assumption it was built upon.
Speed, collaboration, pace, simplicity, team structure, and customer feedback
cycles have all been transformed beyond recognition. The industry now demands
a new framework and philosophy for managing software development, one
designed from the ground up for AI capabilities. Our teams and thought leaders
are actively working to create this next framework for AI-driven software
development that will fuel the next decade of progress. Forward-thinking
organizations must begin building and adopting these new practices now or risk
becoming as obsolete as Waterfall.

