- WHITE PAPER

WHAT A CTO MUST BUDGET

FOR Al CODING TOOLS:
A Detailed Forecast of Al Coding Costs

Dr. Brian Scott Glassman

This is a research product of https://Alnspire.ai

A CTO’s guide to Al coding tool costs, including per-developer projections, model
pricing trends, and sustainable budgeting strategies.

Executive Summary

CTOs, CEOs, and software development leaders need a clear view of the rising
costs of Al coding tools such as Claude Code and OpenAl’s Codex, and what to
budget for the next quarter and next year. This analysis reviews costs for Claude
and ChatGPT-5 and highlights a methodology that can be applied to your
organization to project future Al coding tool expenses, because not everyone has a
budget of a Fortune 500 company.

The analysis arrived at the $1,500 or $3,000 monthly per-developer budget range
by calculating the hourly costs of running Al coding tools (GPT-5 vs Claude for
single agents), then modeling realistic usage scenarios where developers would run
Al coding assistants for total time of 3—-5 hours daily with 1, 3, or 5 concurrent Al
agents. The $1,500 budget tier assumes developers use Al coding tools with up to
3 concurrent agents for approximately 3 hours per day (reflecting current usage
patterns), while the $3,000 tier accounts for more aggressive usages with upto 5
concurrent agents running for up to 5 hours daily. These projections factor in
expected price decreases of 40% and 70% respectively over the next six months
due to model optimization and competition, while also accounting for increased
usage and productivity gains, ultimately predicting a stable cost equilibrium
around $70 per hour of Al used.

The analysis further concludes that establishing a structured monthly Al coding
budget for developers can promote more strategic and efficient use of compute
resources before executing Al-driven coding prompts. The following table presents
my recommended monthly Al coding budgets for teams of various sizes, based on
two tiers: $1,500 per developer per month with access to Claude Al (Opus (5%
usages) with Claude Sonnet 4.1 (95%), once released, utilizing up to three
concurrent agents for a total coding time of three hours per day) and premium tier
of $3,000 per developer per month with premium Claude Al (Opus with Claude
Sonnet 4.1 utilizing up to five concurrent agents for a total of five hours per day
coding). These are significant additional costs, but are to a large degree a must due
to the massive efficiency gains from using a frontier Al.

Team Size $1500 Monthly Budget $3000 Monthly Budget

1 $1.5k $3k

5 $7.5k $15k
10 $15k $30k
25 $37.5k $75k
50 $75k $1650k
100 $150k $300k

Table: Monthly Budgets for Al powered Coding Tools

The key takeaway from this analysis is as follows:

e Frontier LLMs are expected to continue producing more tokens per minute
while requiring fewer computational resources. As a result, the cost per input
and output token will decline until it reaches what | see as a baseline
(approximately $1 per million input tokens and around $10 per million output
tokens), after which pricing will primarily reflect perceived value and
reputation, and base on some level of competition, rather than be based on
operational expenses or R&D recovery.

Frontier models will likely be offered in two tiers: one optimized for maximum
accuracy and quality, and another designed for bulk coding tasks with solid but
highly cost-efficient performance. The premium tier will be priced higher 2X the
lower model, while the bulk coding model will be more affordable. This
approach balances computational demands and cost, allowing the two models
to complement each other effectively, expected to average the costs with 5%
being on the premium model.

The quality of coding outputs from these models is projected to improve
steadily, with anticipated gains of 20% to 40% per quarter in improvements in
first time accurate completions. Over the next several years, it will be
challenging for open-source alternatives to replace leading frontier models
such as those from OpenAl and Claude. The mentioned closed source frontier
models are expected to generate significant revenues from customers, which
will further fund accelerated training, enhancements, and release cycles. The
business model of open-source alternatives may struggle to remain
competitive in this environment (it was nice but | don’t see it lasting).

Token generation rates (tokens per minute) are expected to increase gradually
(20 to 40%), unless advancements in hardware, such as LLM-optimized chips
from companies like Groq (not xAl's Grok), or Inference only Cards from NVIDIA
are applied to OpenAi and Anthropic then we can see 100% to 200%
improvements in token rate generation.

Using GPT-5 for five consecutive hours per day costs about $14, compared to
$75 for Claude. With three agents over the same period, costs rise to roughly
$42 for GPT-5 and $225 for Claude. Claude’s pricing, however, is expected to
decrease significantly with the release of Sonnet 4.1.

Both conservative and aggressive adoption of Claude result in daily Al coding
costs stabilizing around $70 per hour, with efficiency gains balanced by price
deflation, ultimately delivering far greater productivity without significantly
increasing expenses (see that section for clarification).

Projected workforce costs scale rapidly: at $1,500 per developer per month,
teams of 100 can reach $1.8M annually, while at $3,000 per developer per
month, costs double to $3.6M per year, underscoring the need for strict budget
controls and strategic deployment of Al coding tools so budgets are not blown
out. Last thing we want is coders funding their own unauthorized side projects
with Al coding hours stolen from their parent company.

Note: Use this full analysis as a template within your own Al system to calculate
your own detailed corporate Al coding cost projections. If you are dissatisfied
with any of the assumptions, you can adjust them within your own model. Ask
the Al to recreate the model by stating the core assumptions, then generate
three scenarios and make the necessary adjustments accordingly specific to
your corporation.

Note: This analysis does not include a detailed review of productivity gains.
While it may seem logical to perform a cost-benefit analysis, in practice the
productivity impact varies greatly from task to task. Establishing a reliable
baseline is nearly impossible without incorporating an organization’s specific Al
coding use cases. Therefore, each company must conduct its own testing to
evaluate productivity improvements accurately.

e ¢ ¢ |ntroduction

e o ¢ (CTOsand Engineering VPs must begin factoring the substantial cost of Al coding
e ¢ ¢ programs into their departmental planning today. While adoption may seem early,
e o ¢ jtiscritical to allocate budgets now for upcoming quarters and the next year to

°* ® * sustain momentum in Al-based software development and avoid falling behind.

® ¢ ¢ Alcoding providers, along with their cloud inference partners, are set to capture
significant revenues as software developer productivity and effectiveness
increase dramatically through the use of Al (tens of billions in compute bills).
However, this leap in performance will come at a steep price. Technology
leadership teams should prepare their CEOs in advance for these additional costs,
as the bill for Al-driven productivity will be very high and likely remain that way.

Consequently, the central question for every CTO is: What will the cost per
developer be? This article aims to provide that answer.
Let’s jump into it.

A Quick Look Back at the Cost of OpenAl and Anthropic Coding Models

When ChatGPT and Claude first became effective at coding at scale, their costs
were significantly higher per million tokens. This was because their large
foundational Al models contained vast amounts of information, lacked
optimization for output speed, and were missing many of the structural
improvements that make today’s LLMs faster. As a result, they were expensive to
run on inference compute, leading to higher prices. The table below shows that
pricing with ChatGPT-5 dropped dramatically, primarily because the model is less
CPU intensive while still delivering high-quality results, a clear example of
innovation driving efficiency.

Model / Release Input Cost (per M Output Cost (per M Used for
Period tokens) tokens) Coding
GPT-40 (May ~$5 ~$15 Yes
2024)

ol-pro (Mar £150 $600 Yes
2025)

GPT-5 (Aug $1.25 $10 Yes

2025)

Table 1: Cost of OpenAl model use for coding as they wera released

Next, we examine the historic pricing of Anthropic’s Claude models, which has
generally trended upward. However, the upcoming September release of Claude
4.1 Sonnet is expected to include a price reduction to better align with OpenAl’s
pricing. The most capable model for coding, Claude Opus 4.1, remains quite
expensive. Consequently, Anthropic recommends using Opus for planning and
complex coding tasks while leveraging Sonnet for large-scale coding due to its
higher token output rates. | also expect to see a multi-model approach, where the
more tedious, complex, or important the task, the more likely organizations will
rely on the most expensive Al models, because in practice switching models can
be done seamlessly.

Anthropic Claude Models

Model | Release (Date)
Claude 3 Opus (Mar
2024)

Claude 4 Sonnet (May
22 2025)

Claude 4 Sonnet
(extended context)

Claude 4 Opus (May
22 2025)

Claude Opus 4.1 (Aug
5 2025)

Input Cost (per

M tokens)

$15

$3

56

$15

$15

Qutput Cost (per

M tokens)

$75

$15

$22.50

$75

$75

Used for
Coding

Yes

Yes

Yes (2200k

tokens)

Yes

Yes

Table 2: Cost of Anthropic's model use for coding as they were released

Pricing Trends of Al Coding Models
Below is the pricing for each frontier model at the time of its release.

Month Model
2024- Claude 3
03 Opus
2024- GPT-40
05

2025- ol-pro
03

2025- Claude 4
05 Sonnet
2025- GPT-5
08

Table 3: Pricing trends of major Al coding models at release, showing shifts across OpenAl and Anthropic

Provider

Anthropic

OpenAl

OpenAl

Anthropic

OpenAl

Input Output
Cost Cost
$15 $75
$5 $15
$150 $600
$3 $15
£1.25 810

Key Insight

Baseline pricing for
high-end Al models

Dramatic 66.7%
input, 80% output
reduction

Specialized
reasoning model,
major outlier

Return to low costs:
98% input, 97.5%
output drop

Continued
deflation: 58.3%
input, 33.3% output
drop

We are beginning to see competition between OpenAl and Anthropic drive down
per-million-token pricing, alongside the evolution of smaller, more efficient
models. OpenAl took a different approach with GPT-5 by introducing reasoning
effort = {low, medium, high}, which directs the model to spend more compute
cycles before producing an answer, generally improving quality. Nevertheless, this
is a less optimal solution compared to deploying two distinct models, one of which
is smaller and requires a lighter compute footprint.

Opinion: | expect the input token cost to stabilize at around $1, while the output
cost will likely remain in the $10 to $20 range for frontier coding models over the
next year. The detailed reasoning behind this expectation is beyond the scope of
this article, but | would be glad to discuss it further.

Coding Performance and Benchmark Comparisons

Next, we need to examine coding performance. From the table, it is clear that each
model shows excellent improvement on its SWE-bench coding tasks, advancing at
a steady pace. Soon SWE-Benchmark test will need a new version. Improved
output quality naturally supports higher pricing, particularly when sensitive tasks
demand high-quality coding and DevOps Al agents, plus human developers get
used to a certain quality of code and do not like to go backwards, as it feels highly
counterproductive.

Model Release SWE-bench Notes
Date Verified

GPT-5 Aug 2025 74.9% Top scoring, narrowly ahead of
Claude Opus 4.1

Claude Aug 2025 74.5% Incremental but meaningful gain

Opus 4.1 over Opus 4

Claude May 2025 -64.9% Solid mid-tier Anthropic model

Sonnet 4

Claude May 2025 72.5% Strong performer on large-scale

Opus 4 coding problems

GPT-do0 May 2024 ~21.6% Weakest performer in
benchmarks

Table 4: Coding performance benchmark results across models

However, output quality is only part of the equation. We must also consider the
speed at which these outputs are generated.

Coding Speed / Token Generation Rate

As developers, we value rapid code generation, but more importantly, we expect
the process to continue reliably until all planned tasks are completed. The ability
to step away briefly, such as taking a break while tasks are executed seamlessly,
fosters a sense of productivity and efficiency. Smaller models like Claude Sonnet
often achieve faster token generation, while GPT-5 also delivers impressive speeds
through its architecture. However, at higher reasoning levels, GPT-5 performance
slows noticeably. In my assessment, attempting to make a large language model
function as a universal multi-tool, as seen with GPT-5, is not ideal because the
components inevitably influence one another, creating complex internal
dependencies.

The key lesson is that Al agent models (like Claude Sonnet) should be optimized for
speed since they perform the majority of the work, while the orchestrator LLM
(Opus so on) can afford to operate more slowly, as its accuracy is crucial to guiding
the overall process. Expect the majority of the token generation speed to be
around 30 to around 50 token/sec in practice for the next 6 months. Unless a
significant breakthrough emerges to challenge the frontier models, such as Mamba
or Diffusion coding models.

Mode! Max Token Speed Notes on Latency [Source
Range (tokens/sec) Behavior

GPT-5 ~181.5 Very fast Artificial

(medium) throughput, Analysis.ai,
optimized Reddit

Claude 45 - 65 Quick first-token Medium.com

Opus 4.1 latency (3-5 sec)

Claude 34-946 Highly variable Artificial

Sonnet 4 performance Analysis.ai,

Reddit

Table 5: Token Generation Speed Comparison

The table below provides a more accurate representation of coding speed, as
token outputs per minute of coding tend to be more stable and are relatively close
to one another. These figures are based on user-reported data rather than
questionable company metrics.

Model Average Tokens per Sources
PM Hour
GPT-5 ~2,360 141,600 Leanware
Claude Opus ~2,210 132,600 Artificial Analysis, Medium
41
Claude Sonnet ~3,710 222,600 Reddit, Replicate,
4 Composio

Table &: User Reported Token Generation Speed Comparison (Per Minute and Per Hour for GPT-5, Claude
Opus, and Sonnet)

Cost Per Hour of Coding at Full Speed

Currently, no Al system codes continuously for a full hour, though this may change
in the near future (give it 4 months). Today, software developers typically run a
coding plan against a large product specification, then evaluate the results,
suggest changes and updates, or execute the code to analyze outcomes. In
practice, my team operates at full coding speed for roughly 30 to 40 percent of
each hour. Over an eight-hour workday, this equates to approximately three hours
of sustained Al-driven coding. For a baseline calculation, however, we need to
determine the per-hour costs. A referenced source cited an 8-to-1 input-to-output
ratio based on context window size and related factors. Using this, | multiplied the

output tokens by eight to estimate the per-hour cost at full read-write capacity for
the three models.

Although GPT-5 offers the lowest cost per hour, it is relatively new, and developers
still require time to evaluate its effectiveness before committing to such a
transition. While a CTO may be tempted to mandate adoption purely for cost
savings, the strategic wisdom of such a decision warrants careful consideration like
a unbiased blind code analysis.

Model Input Tokens/Hour Output Tokens/Hour Total
Cost/ Input Cost/ Qutput Cost/Hour
M M

GPT-5 $1.25 1,132,800 $10.00 141,600 $2.83

Claude $15.00 1,060,800 $75.00 132,600 $25.86

Opus 4.1

(Aug 5

2025)

Claude 4 $6.00 1,780,800 $22.50 222,600 $15.69

Sonnet

(extended)

Table 6: Cost Per Hour of Coding at Full Speed

Agent Cost Comparison

Claude Code with agents demonstrated that the future of software development
WILL rely heavily on multi-agent coding. In this model, agents work independently
on their respective pieces of code and then close once their portion of the plan is
complete. For the purposes of this analysis, | have assumed scenarios with 1, 3,
and 5 agents operating concurrently. These are the respective costs. While GPT-5
is generally more cost-efficient, the trade-off between cost and quality must
always be considered. It is also important to note that operating with 5 agents

drives costs into a range comparable to the hourly wage of many software
professionals.

Agents GPT-5 Claude Sonnet 4

1 $2.83 $15.69
3 $8.49 $47.07
5 $14.15 $78.45

Table 7: Cost Per Hour of Programming Assuming You Add More Agents

Senior Software Developer Daily Al Costs

Again you can not expect and coder to run the Al all day, so | divided it up into
running for a total of 3 hours, 5 hours, and 8 hours. to show expenses for both GPT-
5 and Claude Sonnet. | expect the Claude Sonnet 4.1 to be release to drop the

pricing by 40% so the 5 and 8 hour pricing for 5 agent will be around ~$150 to
~$350 per day.

Agents 3 Hours 5 Hours 8 Hours
1 $8.49 $14.15 $22.64
3 $25.47 $42.45 $67.92
5 $42.45 $70.75 $113.20

Table 8a: Daily Cost of GPT-5 for 3, 5, and 8 Hours Across 1, 3, and 5 Agents

Agents 3 Hours 5 Hours 8 Hours
1 $47.07 $78.45 $1256.52
3 $1a1 $235.35 $376.56
6 $235.35 $392.25 $627.60

Table 8b: Daily Cost of Claude Sonnet 4 for 3, 5, and B Hours Across 1, 3, and 5 Agents

Scenario Analysis: Conservative vs Aggressive Al Adoption

| have considered several scenarios that may unfold over the next six months. As a
baseline, we assume Al is used for 3 hours per day with 1 agent, which is close to
what many programs are experiencing today in their token spend.

In a conservative six-month projection, Al usage remains at 3 hours per day but
expands to 3 agents working concurrently. In this case, token speed is expected to
increase by 25%, while prices decrease by 50%, resulting in daily costs of around
$70 per hour, but with significantly greater output (over 300% increase in code
writing compared to 1 agent for 3 hours).

For the aggressive forecast scenario, Al coding is projected to run for 5 hours per
day with 5 agents (~730% increase compared to 3 agents for 3 hours).

Although token generation speeds would also increase, | anticipate costs to
decline more rapidly, reducing to about 70% of their current levels. Despite higher
performance and productivity, the net result is that the cost per hour of Al coding
remains roughly $70, but with significantly greater output (over 730% increase in
code writing over the conservative case).

Scenario Hours/Day Agents Speed Price Daily %
Changes Cuts Cost Change

Base Case 3 1 Baseline Baseline $50

Conservative 3 3 +25% -50% $70 +62.3%
output both

Aggressive 5 5 +50% =70% $70 +62.7%
output both

Table 9; Scenario Analysis of Daily Al Usage Costs

Scenario Usage Multiplier Price Multiplier Net
Effect
Conservative +300% (3x agents, 25% -50% (halved +62.3%
speed) prices)
Aggressive +733% (5x agents, 67% -70% (major price +62.7%
hours, speed gains) cuts)

Table 10: Formula Impact Analysis of Usage and Pricing

Key Insight: Massive usage increases (+300% to +733%) are almost entirely offset
by projected Al price deflation (-50% to -70%), resulting in similar cost outcomes.

Monthly Costs Analysis (20 Working Days)

The most important part of this analysis is expected cost per month of deploying
these agent will be high, look at current sonnet 4 vs. expected 4.1 (I took half the
cost) still at $1,400 per month per programmer only running 3 agents is significant.

Across a development team of 50 programmers, the monthly bill could reach
approximately $70,000 (or $840,000 annually) when using Claude Sonnet, while
GPT-5 would still amount to about $25,000 per month (or $300,000 annually).
Although these costs are substantial, the corresponding productivity gains are

expected to be significant. Organizations should prepare their budgets
accordingly.

Model Agents Daily Cost Monthly Cost
GPT-5 1 $9 $170

Claude Sonnet 4 1 $48 $940

GPT-5 3 $25 $500

Claude Sonnet 4 3 $140 $2,800
Claude Sonnet 4.1 (expected) 3 $70 $1,400

Table 11: Monthly cost for Al running 3 Hours/Day with 1to 3 agents

Now say we bump it up to 5 hours per day with 1 to 5 agents, Across a
development team of 50 programmers, the monthly bill could reach
approximately $190k (or $2.34M annually) when using Claude Sonnet 4.1, while

GPT-5 would still amount to about $70k per month (or $840k annually). Yep this is
still very expensive.

Model Agents Daily Cost Monthly Cost
GPT-5 1 $14 $280

Claude Sonnet 4 1 $78 $1,570
GPT-5 5 $70 $1,400
Claude Sonnet 4 5 $390 $7,850
Claude Sonnet 4.1 (expected) 5 $195 $3,900

Table 12: Monthly cost for Al running 5 Hours/Day with 1to 5 agents

Projected Cost for the Workforce

You can manage Al deployment by limiting the number of Al coding hours
allocated per developer. While this approach may reduce maximum productivity, it
encourages more strategic use of compute resources and better task planning per
developer. A budget can be set on a per-developer basis, with the following
examples:

Running Al coding for 3 hours a day with 3 agents would likely result in costs
ranging between $1,000 and $1,700 per employee per month.

For highly productive developers running Al for 5 hours a day with 3 agents, the
monthly budget would be approximately $3,000.

What organizations should avoid, among other issues, is allowing developers to
press ‘go’ on a poorly conceived Al coding plan that consumes 20 to 30 minutes of
expensive compute only to generate code that must be rolled back. Basically call it
Al coding waste, and doing this repeatedly over teams of developers is a great way
to waste money and time. One simple way | can see to stop this is to give them a
token budget and let them get smarter about using them to maximize their work.

Team Size $1500 Monthly Budget Yearly Spend ($1500)
1 $1.5k $18k

5 $7.5k $90k

10 $156k $180k

25 $37.5k $450k

50 $75k $900K

100 $150k $1.8M

Table 13a: Projected Team Al Budget ($1500 Monthly Budget)

Team Size $3000 Monthly Budget Yearly Spend ($3000)
1 $3k $36k

5 $15k $180k

10 $30k $360k

25 $75k $900k

50 $150k $1.8M

100 $300k $3.6M

Table 13b: Projected Team Al Budget ($3000 Monthly Budget)

Conclusion

The financial impact of deploying Al coding tools is substantial and will require
careful planning by CTOs and technology leaders. While prices may gradually
stabilize, they are still likely to remain expensive on a per-user basis. A smart
strategy is to enforce budget caps per developer, ensuring that organizations
extend their Al budgets effectively while still capturing the productivity benefits of
Al-driven software development.

Note: | have deliberately chosen not to include Google Gemini 2.5 or xAl Grok in
this analysis. Google’s track record as a steward of sensitive data raises concerns
about entrusting them with proprietary corporate code, and for that reason | do
not consider them a viable option. In addition, Grok remains a very new entrant to
the market, and its relative immaturity brings the risk of significant security

vulnerabilities. As a result, both platforms are excluded from the projections in this
report.

